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In this paper some nonclassical representations of OSpq(I/2) algebra are presented 
and the completeness relation of q-deformed supercoherent states is proved. 

1. INTRODUCTION 

Quantum groups or the q-deformed Lie algebra implies some specific 
deformation of a classical Lie algebra. From a mathematical point of view, 
it is a noncommutative associative Hopf algebra. After Jimbo (1985, 1986) 
and Drinfeld (1986) introduced the q-deformed su(2) algebra [SUq(2) algebra], 
Kulish (1988) and Saleur (1990) showed that a q-deformation of the graded 
algebra osp(l/2) algebra could also be defined, in relation to the graded 
Yang-Baxter equation (Kulish and Sklyanin, 1982). 

In this paper we present a nonclassical representation of OSpq(l/2) algebra 
and prove the completeness relation for the q-spin coherent state. This repre- 
sentation is not defined in the classical limit q ---> 1, but it enables us 
to obtain the completeness relation for the q-spin supercoherent states of 
OSpq( l/2) algebra.  

2. NONCLASSICAL REPRESENTATION OF OSpq(|/2) ALGEBRA 

In this section we present a nonclassical realization of OSpq(l/2) algebra. 
Consider the OSpq(1/2) algebra given by 

[H, v_+] = -v_+, {v+, v_) = [2H] (1) 
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where the q-number Ix] is defined as 

I x ] -  

W e  introduce the bases 

v+e,, = f (n)e , ,+ h 

He,, = (n - 2j)e,,,  

qX -- q--X 

q_q-I 

v_e,, = g ( n ) e ' - I  

n = 0 , 1 , 2  . . . . .  4j (2) 

where we assumed that there exists a ground state e0 satisfying 

v-eo = 0 (3) 

This representation is 4j + 1 dimensional. There exist 2j + 1 even states 
(bosonic states) and 2j odd states (fermionic states). Here we assumed that 
j is integer or half odd integer. 

From the OSpq(l/2) algebra we obtain 

f ( n -  l)g(n) 

n - I  

= ~ (--)"-I-k[--4j + 2k] 
k=0  

= (_)n-lq__+ q-t  q q-t  [n]+[4j -- n + 1]+ (4) 

where the q-fermionic number [x]§ is defined as 

q-X _ ( _  )xcff 
[x]+ - (5) q + q - t  

When q goes to 1, the right-hand side of equation (4) diverges, so we cannot 
determine the functionsf(n) and g(n) .  Thus this representation does not have 
a classical analogue. From now on we assume that q 4: 1. 

The first choice for the representation is 

v+e, = (_  l),a2(~ + q_,~t/2 _ q - i )  ([n + 1]+[4j - n]+)l/2e,'+t 

- - q r  ([n]§ - n + l]+)me,'_l 

He,, = (n - 2j)e,,,  n = 0, 1 . . . .  , 4 j  (6) 

The second choice for the representation is obtained by replacing n by 2j + m, 
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v+e,.  = (_)(zj+,,,)/2 _+ - l )  ([2j + m + l ]+[2j  - m]+)U2e.,+ l 

v-era = _ ( _ ) ( 2 j + m - ~ ) e  + q -  ([2j + ml+[2j  - m + l l+) l%m_l  - -  q -  

Hem = me, . ,  m = - 2j,  - 2j  + 1 . . . . .  2 j  (7) 

On this representat ion space we have v* = - v +  and H* = H. This 
representat ion D(4h)  is def ined on the (4j + l ) -dimensional  Hilbert  space 
H4j with or thonormal  basis {e,,: n = - 2 j  . . . . .  2j} such that 

(e,,, e~,) = 8m,,,' (8) 

The  third convenient  basis for  H4j is the set {f,,: n = 0, 1 . . . . .  4j} such that 

_ q - i ]  [4j  --  n l + f . + l  

_ q - I  [ n l §  

Hf~ = (n - 2 j ) f . ,  n = O, 1 . . . . .  4 j  (9) 

Let  us introduce a convenient  one-variable  model  o f  D(4h). Here the vector  
space Haj consists o f  polynomials  f ( z )  of  max imum order 4j in the complex  
variable z. The  action o f  the o s p q ( l / 2 )  algebra is def ined by the operators 

V+ = ( q 2  _ q - 2 ) - I z ( q - 4 J T z  _ q4JRT~zt) 

v_ = (q2 _ q-2)-1 1 ( r  z _ RT~_z i ) 
Z 

d 
H = - 2 J + Z d z  (lo) 

where 

~ f ( z )  = f ( q ~ z ) ,  R f ( z )  = f ( - z )  

From the above representation we have 

v_fo = o ,  v. f4 j  = o ( l  1). 
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3. C O M P L E T E N E S S  R E L A T I O N  O F  q-SPIN 
S U P E R C O H E R E N T  S T A T E S  

In this section we prove the completeness relation of q-spin supercoher- 
ent states of the OSpq(1/2) algebra. In order to do so it is necessary to investigate 
some properties of fermionic q-numbers. 

The fermionic q-number [x]+ has peculiar properties. For example, in 
the limit q --> 1, we have 

1 - (__)x 
[x]+ ---> (12) 

2 

We can construct the fermionic q-derivative as follows: 

D§ = f (q-  ix) - f ( - q x )  
x(q + q-i) (13) 

Then we obtain 

D+ff = [ n ] J  -1 

The fermionic q-deformed exponential function 

satisfies 

(14) 

eq(X) = .~--0 ~ x" (15) 

D+eq(x) = eq(X) 
Its inverse operaton called the fermionic q-integral, is defined as 

d ~  F(x) = (q + q-I)x ~ (--q)"q"+tF((-q)"q"+lx) 
n=O 

(16) 

Then we have 

and 

(17) 

I0 
: xn+l 

d xx" - In + (18) 

Ii d.dr eq(X) eq(X) (19) 

From the definition of fermionic q-derivative we obtain the deformed 
Leibniz rule for the fermionic q-derivative 
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D§ = f ( q -  lx)D§ + g ( -  qz)D+f(x) (20) 

o r  

D§ = f ( -qx )D+g(x )  + g(q-~x)D§ (21) 

From the definition of fermionic q-integration, we obtain the fermionic q- 
integration-by-parts formula: 

f~  d+x f (q - lx )D+g(x)  

o r  

= [f(x)g(x)]t] - d+x g ( - q x ) D §  (22) 

Io ~ d ~  f ( -  qx)D§ (x) g 

= [f(x)g(x)]~ - d ~  g(q- tx)D§ (23) 

In Section 2 we presented three types of  representation of  OSpq(ll2) 
algebra. In order to prove the completeness relation for q-deformed superco- 
herent states, we should introduce the new representation of  the algebra (1). 
Let us assume that v§ is not the (anti) Hermitian conjugate of  v_. Instead we 
introduce the operator satisfying 

H' e. = n e n  (24) 

Let us assume that 

v* = v _ ( - )  tr, v*_ = (-)H'v+ (25) 

where v* means the dual of  v• Then the algebra (1) remains invariant after 
acting with the * operation. 

From the conjugate relation 

(en, v-en+t) = (v'e,, ,  e.+0 (26) 

we get the relation g(n) = ( - ) " f ( n  - 1) in Eq. (4). Using this, we have 
the representation 

v+e,,= i(_).+~(~ + q_,)~/2 _ q- i  ([n + 1]+[4j - n]+)U2e.+ t 

+ q -  
v_e.  = i ([n]§ -- n + 11§ 

- -  q -  

He,, = (n - 2j)en, n = O, 1 . . . . .  4j (27) 
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Then the q-spin coherent state I z) is defined as 

+;_,) zv-)e   
where e4j is highest state vector for representation (27). Then we get 

4j i"z"( [4j]+! ),n 
IZ) ---- ,,=OZ \[n]+!["-~ --- ,,]+! e4j-n (29) 

Then this q-spin supercoherent state satisfies the completeness relation 

f d§ dO Iz)(zllx(Izl 2) = 1 (30) 

where 

1 
ix(Izl 2) = ~ [4j + 1]§ + Iz12) -4j-2 (31) 

In deriving Eq. (30) we used the formula 

I d+x x~( x) -m (32) 1 + 

= (_),{,,+l)(_),. [n]+! [m - n - 2]+! (n < m) 
[ m -  1]+! 

4. CONCLUSION 

In this paper we obtained some nonclassical representations of OSpq(l/2) 
algebra and used them to prove the completeness relation for q-spin superco- 
herent states. This representation has no classical analogue. It is not defined 
in the limit q ---> 1. At this stage we have an open problem: Is it possible to 
define the q-deformed supercoherent state so that it satisfies the completeness 
relation and can be defined in the classical limit? 
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